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Two-variable quasi-scaling for three-dimensional lattice 
polymers in a poor solvent regime 

Motoshi Katoht and Hiroshi Okamotot5 
Department of Systems Engineering, Nagoya Institute of Technology, Cokisomachi, 
Shouwaku, Nagoya, 466, Japan 

Received 20 April 1990 

Abstract. The context of the renormalization groupapplied to the lattice polymer statistical 
mechanics with the nearest-neighbour triplef interaction in addition to the usual nearest- 
neighbour pair interaction yields a two-variable quasi-scaling relation. It asserts that a 
reduced moment is described by two arbitrary reduced moments. The validity of the 
two-variable quasi-scaling has been examined for lattice polymers with polymerization 
degree up to IO00 in the poor solvent regime and was confirmed. I t  is well known that 
single-variable scaling fails in this solvent regime. Linear relations connecting three reduced 
moments which are valid near the respective Gaussian points and considered to be universal 
are presented. The results, however, are not consistent with the premise employed in the 
continuous polymer model. The working RC is nonlinear. The consistency may be attained 
by polymers with polymerization degree much larger than 1000 for which the linearized 
RG will work. Our basic equation involves no particular reference point such as the @-point. 
This is in contrast to previous scaling simulations and experiments. 

1. Introduction 

In addressing finite polymer statistical mechanics, the concept of scaling, which is 
essentially appropriate for infinite polymers, should be replaced by that of quasi-scaling 
(Watanabe et al 1990). This paper demonstrates that the statistical mechanics of 
three-dimensional finite lattice polymers (with excluded volume and not shorter than 
225 in chain length) in the poor solvent regime better obeys two-variable quasi-scaling 
rather than single-variable quasi-scaling. The intra-chain interaction includes, in addi- 
tion to the nearest-neighbour pair interaction, the nearest-neighbour triplet interaction. 
Here, the latter means that an arrangement in which a chain element is the nearest 
neighbour of two non-bonded chain elements contributes some amount of energy 
(figure 1). The introduction of the new interaction into the lattice polymer model may 

, .,. 
Figure 1. Illustration of the nearest-neighbour triplet 
interaction. A configuration in which an element 
neighbouring two arbitrary non-bonded elements 
contributes an energy E, in addition to the pair 
interaction energy E * .  
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be viewed as  an artifice of the polymer renormalization group (RG) to rescue the failure 
of single-variable scaling for lattice polymers in the poor solvent regime (e.g. Kremer 
er a /  1982, Okamoto 1988). The theoretical contiauous polymer model considers a 
polymer chain to be a Gaussian chain with two- and three-body &function like 
interaction (see the appendix). We should recall that the operation of an RG on a 
continuous polymer with only two-body interaction yields the three-body term. (Oono 
and Freed !%I),  Such may occur for !at!ice po!ymers. 

Controlling the nearest-neighbour triplet interaction in lattice polymers will also 
help us to study the meaning of the difference in the scaling behaviours between the 
two polymer models and the logarithmic correction (e.g. Freed 1987, Duplantier 1987) 
in the future. The study of how one might connect the two polymer models has also 
attracted the interest of theorists (e.g. Freed 1985). 

The two-variable quasi-scaling for lattice polymers asserts that a reduced moment 
(see (2.3) below) is described by two arbitrary reduced moments. Watanabe et a/ (1990) 
confirmed the quasi-scaling through numerical experiments by using relatively short 
polymers. Because of the chain length limitation, however, their data around the 
Gaussian points were rather scarce. (The Gaussian point is the point from the Gaussian 
chains in a three-dimensional reduced moment space.) We should notice that the 
behaviour around Gaussian points must be a key to understanding the relations between 
the two polymer models. 

In this paper the lattice polymer simulation is performed through the inversely 
restricted sampling method (Rosenbluth and Rosenbluth 1955, Mazur and McCrackin 
1968). It allows us to handle chains of considerable length near the @-point (McCrackin 
et al 1973) where the inter-chain excluded volume effectively vanishes. With high 
certainty, the Gaussian points lie in the respective master surfaces (or more correctly, 
master shells). Several numerical formulae connecting three reduced moments, which 
are valid near the Gaussian points and considered to be universal, are presented. 

Our lattice polymer RG based on the intra-chain correlation works nonlinearly. 
This is in contrast with the RG based on the inter-chain correlation (Okamoto 1988, 
Yato and Okamoto 1990). We should be careful in comparing the single lattice polymer 
s!&is!ica! mechanics With !heore!iGa! OEES from the ! i n e a r i d  R.C.: 

Our basic equation involves no specific reference point such as the Q-point. We 
made analysis only through direct comparison of measured reduced moments. This is 
in contrast with previous simulations (e.g. Curro and Schaefer 1980, Kremer et a/ 1982, 
Okamoto 1988) and experiments (e.g. Miyaki and Fujita 1981, Perzynski e l  a /  1982, 
Park et al 1987), in which polymer scaling was studied by a scalingvariable constructed 
by chain length and the distance from the @-point. 

M Katoh and H Okamoro 

2. The concept of polymer two-variable quasi-scaling 

We consider that the essentials of the lattice polymer RG are contained in the following 
premise (Okamoto 1988). A two-point correlation iunction l ( l / n ,  7, 6; r )  defined for 
a polymer ensemble before an RG operation is connected with a two-point correlation 
function T(l /n ' ,  v', f ' ;  r) for the ensemble after the operation by 

r ( i /n ,T , [ ;  r )=Aar(1 /n ' ,7 ' , 6 ' ; r ' )  (2.1) 

with r = Ar' 
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In the above, r is the vector distance between the two points involved in the 
correlation, n is the number of elements in a chain, 7 and 5 are the parameters 
signifying the nearest-neighbour pair and triplet interaction respectively, A is the coarse 
graining ratio and the primed quantities are for the ensemble after the RC operation. 
The exponent a should be appropriately chosen. To proceed, we convert (2.1) into a 
more convenient form in which the discreteness of lattices is averaged out. For an 
intra-chain correlation, we define the mth moment by 

Equation (2.1) asserts that a reduced moment M Y  

My (p),./(r")y" ( 2 . 3 )  

is invariant under an RC operation. That is 

M T "  = M;?:", (2.4) 

In considering the radius ofgyration reduced moments (see (3.lb) below), we have 
to reinterpret the two-point correlation appropriately; Consider a flow line in the 
three-dimensional parameter space spanned by I / n ,  '7 and 5. Since a reduced moment 
is held constant along a flow line, and since a flow line in the parameter space can be 
specified by assigning specified values to two arbitrary reference reduced moments 
Mref, and M,,,, we have 

Equation (2 .5 )  asserts the existence of a master surface in a space spanned by 
MI".", M,,f, and M,en. containing points from polymers with various I j n ,  7, and 6. 
For finite polymers, however, ( 2 . 5 )  does not hold strictly. The points from polymers 
with a fixed l / n  but with various 1) and 5 will make a surface in the reduced moment 
space. Likewise, the points polymers with another l / n  will make another surface. The 

asymptotes to that for an infinite polymer. As for finite polymers, one must admit some 
small but finite deviations from (2.5). The concepts of scaling and master surface 
should be replaced by those of quasi-scaling and master shell, respectively. The 
thickness of the master shell is arbitrary, but we assume it to be of the same order as 
the experimental resolution. 

iwv surfaaces arr &Bereni, n,e usus; concep~ ihai 

3. Procedure 

A polymer chain is simulated by a self-avoiding chain of n elements each occupying 
contiguous lattice sites (nmer) in a simple cubic ( s c )  lattice. A nearest-neighbour 
non-bonded element pair contributes an energy e2 to the conformation. In the same 
way, a nearest-neighbour non-bonded element triplet (figure 1) contributes an energy 
E ~ .  The interaction parameters r) and 5 are, respectively, defined by 7 = exp(-pe,) 
and I= exp(-pe,). A solvent condition is specified by a combination of 7 and 5. 

Mean square end-to-end distances, radii of gyration, quasi-radii of gyration and 
mid-f-internal distances (see figure 2 ) ,  as well as their even-order reduced moments, 
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were determined for polymers with n up to'l000. The lattice polymers were generated 
by the Monte Carlo technique of inversely restricted sampling (Rosenbluth and 
Rosenbluth 1955, Mazur and McCrackin 1968). This sampling method allows us to 
handle considerably longer chains but is effective only near the O-point (McCrackin 
et al 1973). Yato and Okamoto (1990) have obtained a few series of the O-point solvent 
conditions. By referring to this, we have chosen the solvent conditions which are to 
be investigated here (table 1) .  Table 2 lists the number of samples generated. 

The quantities mentioned above were calculated respectively by using the relations 

Table 1. The solvent conditions (7 ,  5 )  investigated. The values of 7 were in the range from 
to vmal with an interval of 0.005. 

I .o 1.270 1.360 
1.037 1.210 1.260 
1.05 1.185 1.205 

Table 2. T h e  number of element5 in a chain n and the number o f  samples generated N.. 

" 22s 340 500 750 1000 

N. 102 000 99 500 96 000 90500 85 000 
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In the above, r j ( j )  is the position vector of the ith element, s ; ( j )  is the distance of 
the ith element measured from the mass centre, pi is the generating probability (Mazur 
and McCrackin 19681, and w(j) is the energy of the j th  sample. 

4. Results 

4.1. Single-variable quasi-scaling 

As a preliminary, we briefly illustrate the success and the failure of the single-variable 
quasi-scaling in terms of the reduced moments. If polymer chains, with only the 
nearest-neighbour pair interaction, obey a relation similar to (2.1), the quasi-scaling is 

M;"." = M?"(M,,,). (4.1) 

This claims that any reduced moment MF" is described solely by an arbitrary reference 
reduced moment M,,,. If so, plotting of M;F" against M,,, for polymers with various 
I / n  and q but with a fixed 5 (=1), will form a single curve. Freed (1987) emphasized 
the importance of studies of this kind. The quasi-scaling (4.1) for finite lattice polymers 
is successful in the good solvent regime, but fails in the solvent regime investigated in 
this study. Figure 3 demonstrates an example in which the 100-mer and 31-mer points 
are obtained from Watanabe et al  (1990). 

Figure 3. Plots of MY again51 M:' for polymers with various n. and a fixed ((=l.O). 
Symbols(+),(x),(A)and(O)areforpolymerswithn=31,100,340and 1000,respectively. 
The p i n t s  of the 31-mer and the 100-mer are from Watanabe er a/ (1990). 
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The study by Kremer er a1 (1982) of tetrahedral lattice polymers using the scaling 
variable of an explicit combination of n and 7 also found the failure of the single- 
variable scaling for prefactors in the poor solvent regime. The failure of scaling for 
multi-chain systems in the poor solvent regime has also been reported (Okamoto 1988). 

4.2. Two-variable quasi-scaling 

The above failure and the expected generation of the three-body term by an operation 
of the RG mentioned earlier urges us to study the two-variable quasi-scaling (2.5) for 
polymers with the nearest-neighbour pair and triplet interactions. The study requires 
plotting in a three-dimensional reduced moment space. To envision it, their cross 
sections in planes of constant M,"." were constructed from the available discrete data 
through interpolation. The reduced moments of order {4,2}, {6,4) and {8,6) were 
evaluated for 7 and .$ listed in table 1.  Although in the following our results are 
illustrated only graphically, all the numerical reduced moment data have been deposited 
with the British Library Document Supply Centre as Supplementary Publication No 
SUP70041 (12 pages). 

We examined the cross sectional plottings with respect to possible combinations 
of the twelve reduced moments. Figures 4-10 show arbitrary examples such as M Y  
against ( M y ,  M4.2) etc. Each figure contains the cross section in its Gaussian plane. 
(The Gaussiaan plane is that which contains the Gaussian point and crosses the M;"." 
axis perpendicularly.) Figures 6(b) and 8(b) contain the Bruns point which represents 
the reduced moments at the @-point for infinite sc polymers with 5 equal to unity. 
Bmns obtained them through extrapolation using a polynomial of 1/Jn (Bruns 1984). 

Fig". Croaasections of MY against ( M Y ,  M?') 
for polymers with various n, 7 and 5 in the planer 
of  M : 6 = ( a )  1,800; ( b )  1.850; ( c )  1.908 (M8, .6~ ,a1~e  
far the Gaussian chain); and ( d )  1.950. Symbols (0). 
(A),  (0). (0) and (0) are for polymers with 5 =  I 
and n=225, 340, 500, 750 and 1000, respectively. 
Symbals(*),(A),(.),(T)and(O)areforpolymers 
with (=  1.05 and n = 2 2 5 ,  340. 500, 750 and 1000, 
respectively. (+ )  marks the Gaussian point. 

1.25 1.30 
M:.' 

FigureS. CrosssectionsafM~against(MC.', M?') 
for polymers with various n. and ( in the planer 
of M y = ( ( l )  1.420; ( b )  1.500; ( e )  1.533 ( M > 6 v a l ~ e  
for the Gaussian chain); and ( d )  1.550. For the 
symbols, see the legend lo figure 4. 
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Figured Cross rectionsaf M y  against ( M y ,  M:') Figures. Crosssections of Mt'against (M"., M".) 
for polymers with various n, 7 and 5 in the planes for polymers with various n, 'I. and 5 in the planea 
Of  M > 6 = ( 0 )  2.300: ( b )  2.425 ( M Y  value at the ofM",.=(o) 1.600: ( b )  1.650; ( c )  1.667 (M~'va1ue 
Bruns 11984) paint); ( c )  2.446 ( M Y  Value for the for the Gaussian chain); and i d )  1.70. F O ~  the 
Gaussian chain): and ( d )  2.480. For the symhois, symbols, see the legcnds to figures 4 and 6. 
see the legend to figure 4. ( x )  marks the Bruns point 
(see the text). 

f" 1'1 

@ I b l  

180 

M; 

1 7 0  
1MI 1 7 0  

1 4 5 r  

1 . 2 s  1 30 

Figure7. CrosssectionrofM~i'against(MPi', M:;') Figuro9. Crosrsectionsof M:"against (M:", M:') 
for polymers with various n, 'I, and 5 in the planes ioor polymers with various n. 7, and 5 in the planes 
of M ~ = ( o )  1.800;(b) 1.850;(<) 1.908(M:."value of ( 0 )  M y = 2 . 2 4 0 ;  (b l  2.278 (My4 value 
for the Gaussian chain); and ( d )  1.950. For the for the Gaussian chain); and ( c )  2.320. For the 
symbols, see the legend to figure 4. symbols. see the legend to figure 4. 
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l L / ,  , , ;;., V 1b1 ’ 
I 

135 

120 1 25 

Figure IO. Cross sections of MY against 
(MY, M:*) for polymers with various n, 7, and 5 
intheplanesofMg2=(a)1.550,and(b)  1.667(M>’ 
value for the Gaussian chain). For the symbols. see 
the legend to figure 4. 

1 20 125 
1.30 

M:.’ 

All figures, including non-demonstrated ones, show that points from polymers with 
various 11 n, 7 and 6 falls on a single curve and that the Gaussian point lies in the 
respective master sixii. By virtue of usirig ioiigei chairis in ihis work, the si : i ;~: i~i;s  
near the Gaussian points are much clearer than those in Watanabe er al (1990). 
(Compare the plot of M Y  against ( M y ,  M y )  in this work with that in Watanabe 
er al.) The quasi-scaling (2.5) is thus confirmed. The Bruns points do  not always lie 
in the respective master shells. 

n. “ 1 3  

Figure I I .  Comparison of M:;’ against “ (0 )  with M>’ against n / 3 ( 0 )  for polymers with 
5 - I and 7 = 1.30. 
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r 

I- 
110  t 0401 

Figure 12. Illustration showing the overlapping of 
M t 6  against ( M y , M : * )  and M>' against 
( M y .  Mj2).  The cross sections in the planes of 

( M Y  value for the Gaussian chain). (0) represents 
points from the end-[mend reduced moments; (0) 
represents points from mid-f internal distance 
reduced moments. 

M".6 - - M B . 6  - - ( a )  1.800; ( b )  1.850; and ( c )  1.908 

Care should be paid to the plottings involving MT". In that case, the references 
M,,,, , and MreT2, if ref# d, should be taken from those of the polymers under the same 
solvent condition but with the number of elements n / 3  (e.g. figure 9). Although MTn 
against n/3 and M?" against n behave differently (figure l l ) ,  the master shells 

, M2') and M y =  M F 6 ( M y ,  M Y )  overlap with each other (figure 

We have to comment on data scattering. Our one numerical run yielded 17 000 
samples of 1000-mers and more samples of shorter chains. Five runs were performed. 
The means of the values of MY for the 1000-mer at 7 = 1.236, E =  1.037 among the 
five runs were dispersed from 1.238 and 1.252. The means of Mfh.2 were dispersed from 
1.600 to 1.660. For the 225-mer. the corresponding dispersions were from 1.227 to 
1.230 and from 1.607 to 1.636, respectively. In spite of the dispersion, the points in 
the cross-sectional plottings, however, were well aligned. This is perhaps because the 
means of the reduced moments are correlated with each other. In effect, deviations of 
experimental points from true ones in a reduced moment space are not random, but 
confined within the master shell. 

~ 8 . 6  - 8.6 ~ 6 . 4  ., - M d  ( 
12). 

5. Discussion 

5. I. Gaussian point 

It appears virtually certain that the Gaussian points always lie in the respective master 
shells. Approximating a mster shell near the Gaussian point by a plane such as 

( M > ' -  G:') = a,+a,(M?"- Cy")+a , (M%Y-  Cy) (5.1) 

where G:' etc mean the corresponding reduced moment of the Gaussian chains, we 
estimated the constants in (5.1) by using the least square method and by the multiple 
regression analysis. At present, only a few reduced moment combinations afforded us 
numerals of narrow confidence intervals for the 95% confidence coefficient. Table 3 
lists those giving the coefficients of determination values larger than 0.920. We estimated 
them from those experimental points within a distance of 0.05 from the Gaussian point 
in the reduced moment space. 

We compare the lattice polymer statistics with the continuous model polymer (see 
the appendix). Firstly, while a continuous model polymer is Gaussian irrespective of 
n for the vanishing strength of the two- and the three-body interactions (u2 = 0, vi = O ) ,  
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Table 3. Numerical values of the coefficients in master planes (M:'-G: ' )= 
a,+o,(M:"."-G:".")+o:(Mn."-GP'") with confidence intervals for the 95% confidence 
coefficient and the coefficient of determination R'. They were evaluated from the experi- 
mental points within a distance 0.05 from the Gaussian point in the corresponding reduced 
moment spaces. The cases in which R' was less than 0.92 were omitted. 

, "ne., . . . . ~ .  ^ -.- " ~ -  h h h (6 .6)  {6,4) (4.2) "."",I=".""'O -,.,4r".'l" ' . , , ' " . , I  0.929 
r r I ,  (6 .6 )  {6,4) (4.2) -0.0016i0.0010 -0 .67i0.14 1.7010.14 0.984 
s 5 s (6.6) (6.4) {4,2) -0.005710.0019 -1.02*0.23 1.74*0.19 0.961 
d d d (6.6) (6,4) (4,2) -0.0073*0.0030 -0.64i0.32 1.5710.31 0.938 
5 I r (4,2) (6.4) (4.2) 0.0003i0.0010 0.0010.21 0.92+0.14 0.906 
s I r {6,4) (6.41 (4.21 -0.0003i0.0020 -0.54*0.41 2.20i0.29 0.964 

we could not find out such particular solvent condition (7=, &), at which all lattice 
polymer reduced moments are Gaussian irrespective of n. This is in contrast with the 
reported result that the inter-chain interaction effectively vanishes at 7 = (=1.236), 
(=to (=1.037) irrespective of n (Yato and Okamoto 1990) just as the continuous 
modei poiymers wiih v2 = 0 and u3 = 0. Secondiy, whiie ihe reduced momenis X?" of 
the continuous model polymers near the O-point are single-variable scaling, figure 4 
shows that this is not the case. The former is a prediction of the (R2"') expression of 
the first-order calculation by Cherayil er al (1987) with respect to z 2 =  (2?1)-~' '0~ N"' 
and z, = (2?r ) r3v3  N. The z, term vanishes in their M:". 

5.2. Laffice polymer RG and universalify 

Each M.:n against 7 curve for a fixed ( has a peak, which gets higher with increasing 
n, at a solvent condition ( ~ ~ ( n ) ,  (,,,(n)(=[)) below the O-point (see Watanabe ef a /  
1990 and their supplementary material). The polymer RG fixed point in the poor solvent 
regime must be at the solvent condition (7:. (:) maximizing the reduced moments of 

yeneraiion inhereni in 
the inversely restricted sampling (Mazur and McCrackin 1973), obtaining reliable 
reduceed moment peak data requires many more samples. An attempt to extrapolate 
(v,,,(n), ( , , , (n ) )  to infinite n was abandoned. 

Another way to obtain the fixed point solvent condi!ion is based on a plausible 
assumption that the scaling field at that point is 11 n. The possible logarithmic correction 
vanishes at the fixed point solvent condition (Lawrie and Sarbach 1984, Freed 1987, 
Duplantier 1987). Then, the reduced moments will be independent of n at that solvent 
condition. We attempted to identify the fixed point by this method, but were unsuccess- 
ful. The established quasi-scaling and the failure of the fixed point identification by 
the latter method suggest that the RG under investigation is nonlinear. Comparison 
with the continuous model polymer should he done for lattice polymers with enough 
length n to assure the linearized RG which may be at least a few 1000 in the poor 
solvent regime. The study of the convergence to the scaling limit for polymers wiih n 
less than 1000 should not be guided by theories based on the linearized RG. Previous 
scaling studies of lattice polymers (Kremer ef a /  1982, Cherayil er a/ 1987) should be 
re-examined in this sense. The same might be true for the scaling around the good 
solvent fixed point and for the scaling in SAW (lattice polymers in an athermal solvent). 

infinite po;ymers, C'nfooriunaieiy, 'oecause of the biased 
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The study of the convergence to scaling in this regime (e.g. Havlin and Ben-Avraham 
1983, Majid et a/ 1983, Rapaport 1985, Kelly et a1 1987) may be required to take this 
problem into account. 

As mentioned before, the RG relying exclusively on the inter-chain correlation 
(Okamoto 1988) is linear even in this range of n, and according to Yato and Okamoto 
(1990) its poor solvent fixed point solvent condition is at ( T " ,  &,), We have to admit 
that the RG relying on the inter-chain correlation is not consistent with the RG relying 
on ihe inira-chain correlation. (Tinis is in conirasi with the optimism in OKamoio 
(1988).) Each RG for finite polymers works well but in its own way. Indeed, this is not 
a desirable property for a complete RG. At present, we expect that the situation can 
be improved by polymers with n much longer than 1000 (for sc polymers). This is 
partly supported by the finding that the Gaussian points always lie in the respective 
master shells. 

I l l C  IllilsKr S"l1aGC-b l U U l l "  ,,IUS, "e UIIIVCIS'tl .  ,'IC CLLCCLh U1 LllF G l l a l ' l  rcrrgrrl 
finiteness and the lattice structure, if any, are negligible for polymers with n not less 
than 225 in the poor solvent regime. Watanabe et a/ (1990) found that sc and FCC 

points merged on a single cross section curve. The numerical constants in table 3 
should he interpreted as universal. 

TL. P ̂ ^ ^ ^  r A L. .. ..:..----I -- ^n .... .PAL^ -L-:.. 1^_..1L 
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Appendix 

The continuous model considers that a polymer chain is specified by continuous 
position vector C ( T )  with T being the contour distance along the chain. Near the 
@-point, its Hamiltonian should involve up to the three-body interaction. After some 
transformation. it is 

where N is the chain length, the cut off, i.e. the constraint / T , - T ~ [ * ~ .  applies to the 
integral in the second term, and the constraints ( T ( - T , ( ,  (1,- TJ. 1 ~ ~ -  T , I ~  a apply to 
the integral in the third term, and u2 and ui are the strength of the two- and the 
three-body interaction (e.g. Duplantier 1987, Freed 1987). 

Although the polymer Hamiltonian should involve the four- and higher-body 
interaction terms, they are neglected because the higher-order terms are diminished 
with negative powers of N .  
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